4,899 research outputs found

    ACM Transactions on Graphics

    Get PDF
    Additive manufacturing has recently seen drastic improvements in resolution, making it now possible to fabricate features at scales of hundreds or even dozens of nanometers, which previously required very expensive lithographic methods. As a result, additive manufacturing now seems poised for optical applications, including those relevant to computer graphics, such as material design, as well as display and imaging applications. In this work, we explore the use of additive manufacturing for generating structural colors, where the structures are designed using a fabrication-aware optimization process. This requires a combination of full-wave simulation, a feasible parameterization of the design space, and a tailored optimization procedure. Many of these components should be re-usable for the design of other optical structures at this scale. We show initial results of material samples fabricated based on our designs. While these suffer from the prototype character of state-of-the-art fabrication hardware, we believe they clearly demonstrate the potential of additive nanofabrication for structural colors and other graphics applications

    Computational design of planar multistable compliant structures

    Get PDF
    This paper presents a method for designing planar multistable compliant structures. Given a sequence of desired stable states and the corresponding poses of the structure, we identify the topology and geometric realization of a mechanism—consisting of bars and joints—that is able to physically reproduce the desired multistable behavior. In order to solve this problem efficiently, we build on insights from minimally rigid graph theory to identify simple but effective topologies for the mechanism. We then optimize its geometric parameters, such as joint positions and bar lengths, to obtain correct transitions between the given poses. Simultaneously, we ensure adequate stability of each pose based on an effective approximate error metric related to the elastic energy Hessian of the bars in the mechanism. As demonstrated by our results, we obtain functional multistable mechanisms of manageable complexity that can be fabricated using 3D printing. Further, we evaluated the effectiveness of our method on a large number of examples in the simulation and fabricated several physical prototypes

    On the uncertainty of interdisciplinarity measurements due to incomplete bibliographic data

    Get PDF
    The accuracy of interdisciplinarity measurements is directly related to the quality of the underlying bibliographic data. Existing indicators of interdisciplinarity are not capable of reflecting the inaccuracies introduced by incorrect and incomplete records because correct and complete bibliographic data can rarely be obtained. This is the case for the Rao–Stirling index, which cannot handle references that are not categorized into disciplinary fields. We introduce a method that addresses this problem. It extends the Rao–Stirling index to acknowledge missing data by calculating its interval of uncertainty using computational optimization. The evaluation of our method indicates that the uncertainty interval is not only useful for estimating the inaccuracy of interdisciplinarity measurements, but it also delivers slightly more accurate aggregated interdisciplinarity measurements than the Rao–Stirling index

    Rotating Bose-Einstein condensates in partially anisotropic traps

    Get PDF
    Wir untersuchen dreidimensionale schnell rotierende Bose-Einstein Kondensate in einem theoretischen Kontext. Die Hauptresultate sind untere und obere Schranken an die Gross-Pitaevskii Energie des verdünnten Bose Gases im Thomas-Fermi Limes. Ähnliche Resultate wurden bereits für stark anharmonische äußere Potentiale in 2D und homogene äußere Potentiale in 2D und 3D entwickelt wohingegen wir die Betrachtung von teilweise anisotropen Fallen in 3D präsentieren. Weiters geben wir eine komplette Beschreibung und Illustration der Thomas-Fermi Dichte in diesem Grenzwert an. Wir stellen auch den Quelltext zur Erstellung der Illustrationen zur Verfügung.We study three-dimensional rapidly rotating Bose-Einstein condensates in a theoretical context. The main results are lower and upper bounds on the Gross-Pitaevskii energy of the dilute Bose gas in the Thomas-Fermi limit. Similar results were already obtained for strongly anharmonic external potentials in 2D and homogeneous external potentials in 2D and 3D whereas we present the treatment of partially anisotropic traps in 3D. Furthermore a complete description and illustration of the Thomas-Fermi density in this limit is given. We also supply the source code for the generation of the illustrations

    Partial shape matching using transformation parameter similarity

    Get PDF
    In this paper, we present a method for non-rigid, partial shape matching in vector graphics. Given a user-specified query region in a 2D shape, similar regions are found, even if they are non-linearly distorted. Furthermore, a non-linear mapping is established between the query regions and these matches, which allows the automatic transfer of editing operations such as texturing. This is achieved by a two-step approach. First, pointwise correspondences between the query region and the whole shape are established. The transformation parameters of these correspondences are registered in an appropriate transformation space. For transformations between similar regions, these parameters form surfaces in transformation space, which are extracted in the second step of our method. The extracted regions may be related to the query region by a non-rigid transform, enabling non-rigid shape matching. In this paper, we present a method for non-rigid, partial shape matching in vector graphics. Given a user-specified query region in a 2D shape, similar regions are found, even if they are non-linearly distorted. Furthermore, a non-linear mapping is established between the query regions and these matches, which allows the automatic transfer of editing operations such as texturing. This is achieved by a two-step approach. First, pointwise correspondences between the query region and the whole shape are established. The transformation parameters of these correspondences are registered in an appropriate transformation space. For transformations between similar regions, these parameters form surfaces in transformation space, which are extracted in the second step of our method. The extracted regions may be related to the query region by a non-rigid transform, enabling non-rigid shape matching

    ACM Transactions on Graphics

    Get PDF
    We present an interactive design system to create functional mechanical objects. Our computational approach allows novice users to retarget an existing mechanical template to a user-specified input shape. Our proposed representation for a mechanical template encodes a parameterized mechanism, mechanical constraints that ensure a physically valid configuration, spatial relationships of mechanical parts to the user-provided shape, and functional constraints that specify an intended functionality. We provide an intuitive interface and optimization-in-the-loop approach for finding a valid configuration of the mechanism and the shape to ensure that higher-level functional goals are met. Our algorithm interactively optimizes the mechanism while the user manipulates the placement of mechanical components and the shape. Our system allows users to efficiently explore various design choices and to synthesize customized mechanical objects that can be fabricated with rapid prototyping technologies. We demonstrate the efficacy of our approach by retargeting various mechanical templates to different shapes and fabricating the resulting functional mechanical objects

    X-CAD: Optimizing CAD Models with Extended Finite Elements

    Get PDF
    We propose a novel generic shape optimization method for CAD models based on the eXtended Finite Element Method (XFEM). Our method works directly on the intersection between the model and a regular simulation grid, without the need to mesh or remesh, thus removing a bottleneck of classical shape optimization strategies. This is made possible by a novel hierarchical integration scheme that accurately integrates finite element quantities with sub-element precision. For optimization, we efficiently compute analytical shape derivatives of the entire framework, from model intersection to integration rule generation and XFEM simulation. Moreover, we describe a differentiable projection of shape parameters onto a constraint manifold spanned by user-specified shape preservation, consistency, and manufacturability constraints. We demonstrate the utility of our approach by optimizing mass distribution, strength-to-weight ratio, and inverse elastic shape design objectives directly on parameterized 3D CAD models

    A simple dummy liver assist device prolongs anhepatic survival in a porcine model of total hepatectomy by slight hypothermia

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Advances in intensive care support such as therapeutic hypothermia or new liver assist devices have been the mainstay of treatment attempting to bridge the gap from acute liver failure to liver transplantation, but the efficacy of the available devices in reducing mortality has been questioned. To address this issue, the present animal study was aimed to analyze the pure clinical effects of a simple extracorporeal dummy device in an anhepatic porcine model of acute liver failure.</p> <p>Methods</p> <p>Total hepatectomy was performed in ten female pigs followed by standardized intensive care support until death. Five animals (dummy group, n = 5) underwent additional cyclic connection to an extracorporeal dummy device which consisted of a plasma separation unit. The separated undetoxified plasma was completely returned to the pigs circulation without any plasma substitution or exchange in contrast to animals receiving intensive care support alone (control group, n = 5). All physiological parameters such as vital and ventilation parameters were monitored electronically; laboratory values and endotoxin levels were measured every 8 hours.</p> <p>Results</p> <p>Survival of the dummy device group was 74 ± 6 hours in contrast to 53 ± 5 hours of the control group which was statistically significant (p < 0.05). Body temperature 24 hours after hepatectomy was significantly lower (36.5 ± 0.5°C vs. 38.2 ± 0.7°C) in the dummy device group. Significant lower values were measured for blood lactate (1.9 ± 0.2 vs. 2.5 ± 0.5 mM/L) from 16 hours, creatinine (1.5 ± 0.2 vs. 2.0 ± 0.3 mg/dL) from 40 hours and ammonia (273 ± 122 vs. 1345 ± 700 μg/dL) from 48 hours after hepatectomy until death. A significant rise of endotoxin levels indicated the onset of sepsis at time of death in 60% (3/5) of the dummy device group animals surviving beyond 60 hours from hepatectomy.</p> <p>Conclusions</p> <p>Episodes of slight hypothermia induced by cyclic connection to the extracorporeal dummy device produced a significant survival benefit of more than 20 hours through organ protection and hemodynamic stabilisation. Animal studies which focus on a survival benefit generated by liver assist devices should especially address the aspect of slight transient hypothermia by extracorporeal cooling.</p
    • …
    corecore